

State Space Introduction

MEM 355 Performance Enhancement of Dynamical Systems

Harry G. Kwatny
Department of Mechanical Engineering & Mechanics
Drexel University

Outline

State space techniques emerged around 1960. They are direct and exploit the efficient computations of linear algebra.

- State space models
- The Resolvent
- Solving State Space Equations
- The Matrix Exponential
- Variation of Parameters Formula

State Space Models

The differential equation or 'state space' model is

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 state equation
 $y(t) = Cx(t) + Du(t)$ output equation
 $x(0) = x_0$ initial condition

The state space model describes how the input u(t) and the initial condition affect the state x(t) and the output y(t).

Solving State Equations via the Laplace Transform

$$\dot{x} = Ax + Bu, \quad y = Cx + Du$$

$$\mathcal{L}(\dot{x}) = A\mathcal{L}(x) + B\mathcal{L}(u) \Rightarrow SX(s) - x_0 = AX(s) + BU(s)$$

$$\mathcal{L}(y) = C\mathcal{L}(x) + D\mathcal{L}(u) \Rightarrow Y(s) = CX(s) + DU(s)$$

$$X(s) = [sI - A]^{-1} x_0 + [sI - A]^{-1} BU(s)$$

$$Y(s) = C[sI - A]^{-1} x_0 + \{C[sI - A]^{-1} B + D\}U(s)$$

The Resolvent

$$[sI - A]^{-1} = \frac{\operatorname{adj}(sI - A)}{\det(sI - A)} \approx \frac{n \times n \text{ matrix}}{\det(sI - A)}$$

 $adj(sI - A) = n \times n$ matrix of cofactors

Recall, the n^2 minors of an $n \times n$ matrix M are defined as: the i, j minor M_{ij} is the determinant of the $(n-1)\times(n-1)$ matrix obtained from M by deleting the i^{th} row and j^{th} column.

The
$$i, j$$
 cofactor is $C_{ij} = (-1)^{i+j} M_{ij}$

Solving Linear State Equations

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m$$
 $given: x(t_0) = x_0, u(t) \text{ for } t \ge t_0$
 $find: x(t) \text{ for } t \ge t_0$
 $\dot{x} = Ax + b(t), \quad b(t) := Bu(t), \text{ forced or nonhomogeneous}$
 $\dot{x} = Ax$ homogeneous

Solution Strategy:

- 1) find general sol'n to homogeneous eq. will involve $n = \dim x$ arbitrary parameters
- 2) find any particular solution
- 3) add and pick parameters to match initial condition

Solution in the Time Domain

 $x_1(t), x_2(t)$ sol'ns of homog., c_1, c_2 constants $\downarrow \downarrow$

 $x(t) = c_1 x_1(t) + c_2 x_2(t)$ is a sol'n of homog.

 $x_1(t), x_2(t)$ sol'ns of forced \downarrow

 $x(t) = x_1(t) - x_2(t)$ is a sol'n of homog.

 $x_p(t)$ any sol'n of forced, $x_h(t)$ any sol'n of homog.

 $x(t) = x_h(t) + x_p(t)$ is a sol'n of forced

The Homogeneous Equation

Let us first solve the homogeneous equation

$$\dot{x}(t) = Ax(t), x(t_0) = x_0$$

Strategy: assume a sol'n and see if it works.

Assume a solution in the form of a power series:

$$x(t) = \mathbf{a}_0 + \mathbf{a}_1(t - t_0) + \mathbf{a}_2(t - t_0)^2 + \dots + \mathbf{a}_k(t - t_0)^k + \dots$$

$$\dot{x}(t) \Longrightarrow \mathbf{a}_1 + 2\mathbf{a}_2(t - t_0) + \dots + k\mathbf{a}_k(t - t_0)^{k-1} + \dots$$

$$Ax(t) \Rightarrow A\mathbf{a}_0 + A\mathbf{a}_1(t-t_0) + A\mathbf{a}_2(t-t_0)^2 + \dots + A\mathbf{a}_k(t-t_0)^k + \dots$$

Compare coefficients of like powers of $(t-t_0)$

The Homogeneous Equations, 2

$$\mathbf{a}_{1} = A\mathbf{a}_{0} \qquad \mathbf{a}_{1} = A\mathbf{a}_{0}$$

$$\mathbf{a}_{2} = \frac{1}{2}A\mathbf{a}_{1} \qquad \mathbf{a}_{2} = \frac{1}{2}A^{2}\mathbf{a}_{0}$$

$$\vdots \qquad \Rightarrow \qquad \vdots$$

$$\mathbf{a}_{k} = \frac{1}{k}A\mathbf{a}_{k-1} \qquad \mathbf{a}_{k} = \frac{1}{k!}A^{k}\mathbf{a}_{0}$$

$$\vdots \qquad \vdots$$

$$x(t) = \mathbf{a}_{0} + A\mathbf{a}_{0}(t - t_{0}) + \frac{1}{2}A^{2}\mathbf{a}_{0}(t - t_{0})^{2} + \dots + \frac{1}{k!}A^{k}\mathbf{a}_{0}(t - t_{0})^{k} + \dots$$

$$= \left[I + A(t - t_{0}) + \frac{1}{2}A^{2}(t - t_{0})^{2} + \dots + \frac{1}{k!}A^{k}(t - t_{0})^{k} + \dots\right]\mathbf{a}_{0}$$

The Homogeneous Equation, 3

Set
$$t = t_0$$
, $x(t_0) = x_0$ to obtain

$$\mathbf{a}_0 = x_0 \Longrightarrow$$

$$x(t) = \left[I + A(t - t_0) + \frac{1}{2}A^2(t - t_0)^2 + \dots + \frac{1}{k!}A^k(t - t_0)^k + \dots\right]x_0$$

Recall the series expansion for the (scalar) exponential

$$e^{a(t-t_0)} = 1 + a(t-t_0) + \frac{1}{2}a^2(t-t_0)^2 + \dots + \frac{1}{k!}a^k(t-t_0)^k + \dots$$

Define the matrix exponential

$$e^{A(t-t_0)} \triangleq I + A(t-t_0) + \frac{1}{2}A^2(t-t_0)^2 + \dots + \frac{1}{k!}A^k(t-t_0)^k + \dots$$

so that

State transition matrix

Matrix Exponential

$$e^{At} = I + At + \frac{1}{2}A^2t^2 + \dots + \frac{1}{k!}A^kt^k + \dots$$

Some properties:

$$\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$$

$$e^{At}e^{-At} = I \Longrightarrow \left[e^{At}\right]^{-1} = e^{-At}$$

$$e^{At}e^{Bt} = e^{(A+B)t}$$
 if and only if $AB = BA$

Variation of Parameters Formula

Recall, any sol'n of (forced) satisfies

$$x(t) = x_h(t) + x_p(t)$$

where

 $x_h(t) = e^{At}c$ for constant vector c, satisfies (homog.)

 $x_p(t)$ is any (particular) sol'n of (forced)

We seek $x_p(t)$.

Assume the form $x_p(t) = e^{At}c(t)$.

Variation of Parameters, 2

$$\dot{x}_{p} = Ax_{p} + Bu \text{ and } \frac{d}{dt}e^{At}c(t) = Ae^{At}c(t) + e^{At}\dot{c}(t)$$

$$\Rightarrow \dot{c}(t) = e^{-At}B(t)u(t)$$

$$\Rightarrow c(t) = c(t_{0}) + \int_{t_{0}}^{t} e^{-A\tau}B(\tau)u(\tau)d\tau$$

Now,

$$x(t) = e^{At}c + e^{At} \int_{t_0}^t e^{-A\tau} B(\tau) u(\tau) d\tau$$
$$= e^{At}c + \int_{t_0}^t e^{A(t-\tau)} B(\tau) u(\tau) d\tau$$

Variation of Parameters, 3

Finally,
$$x(t_0) = x_0 \Rightarrow x_0 = e^{At_0}c \Rightarrow c = e^{-At_0}x_0$$

$$\begin{aligned} x(t) &= e^{A(t-t_0)} x_0 + \int_{t_0}^t e^{A(t-\tau)} B(\tau) u(\tau) d\tau \\ &= \Phi(t, t_0) x_0 + \int_{t_0}^t \Phi(t, \tau) B(\tau) u(\tau) d\tau \end{aligned}$$

Recall (with $t_0 = 0$)

$$X(s) = [sI - A]^{-1} x_0 + [sI - A]^{-1} BU(s)$$

By comparison,

$$\mathcal{L}\left[e^{At}\right] = \left[sI - A\right]^{-1}$$

Example - MATLAB

```
>> A=[1 0 0;0 2 1;2 0 0];
>> syms t
>> expm(t*A)
   exp(t),
[\exp(2*t)-2*\exp(t)+1,
                         \exp(2*t), -1/2+1/2*\exp(2*t)]
[ 2*exp(t)-2,
                                                   1]
                                  0,
>> laplace(expm(t*A))
  1/(s-1),
                                                   01
                                  0,
                          1/(s-2), -1/2/s+1/2/(s-2)]
[1/(s-2)-2/(s-1)+1/s,
[2/(s-1)-2/s,
                                                 1/s]
                                  0,
```


Summary

- State transition matrix
- Matrix exponential
- Resolvent
- Variation of parameters formula

