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I
Outline

State space techniques emerged around 1960. They are direct
and exploit the efficient computations of linear algebra.

e State space models

 The Resolvent

e Solving State Space Equations

e The Matrix Exponential

* Variation of Parameters Formula
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State Space Models

(state

input u(t) X(t) output y(t)
— > System - >

The differential equation or 'state space' model is
X(t)=Ax(t)+Bu(t) state equation
y(t)=Cx(t)+Du(t) outputequation
x(O) = X, Initial condition

The state space model describes how the input u(t) and

the initial condition affect the state x(t)and the output y(t).




Solving State Equations via the
Laplace Transform

X=Ax+Bu, y=Cx+Du
£(X)= AL (x)+BL(u) SX (5)— X,
—
S)=

— AX (s
£(y)=C£(x)+DL(u) Y(s)=C D

= BU (s)
X (s)+DU (s)

)+
U (s

X (s)=[sl —A] " x,+[sl —A] " BU (s)
Y(s)=Cl[sl —A] "x,+{C[sl —A] "B+D|Us)




-
The Resolvent

adj(sl —A) nxn matrix
det(sl —A)  det(sl — A)

adj(sl — A)=nxn matrix of cofactors

[sI —A]" =

Recall, the n® minors of an nxn matrix M are defined
as: the 1, ] minor M;; Is the determinant of the

(n—1)x(n—1) matrix obtained from M by deleting
the i" row and j" column.
Thei, j cofactor is C; =(-1)™ M,

J




Solving Linear State Equations
X(t)=Ax(t)+Bu(t), xeR" ueR"
given: x(t,) =Xy, u(t) fort>t,
find : x(t) fort>t,

x=Ax+b(t), b(t):=Bu(t), forced or nonhomogeneous
X = AX homogeneous

Solution Strategy:
1) find general sol'n to homogeneous eq. -
will involve n = dim x arbitrary parameters
2) find any particular solution
3) add and pick parameters to match initial condition




Solution in the Time Domain

X, (t), X, (t) sol'nsof homog., c,,c, constants
U
X(t)=cx (t)+Cc,x, (t)isasoln of homog.

X (t), %, (t) sol'ns of forced
U
X(t)=x,(t)—x,(t)isasol'n of homog.

X, (t) any sol'n of forced, x, (t) any sol'n of homog.

U

X(t)=x, (t)+x, (t)isasoln of forced
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The Homogeneous Equation

Let us first solve the homogeneous equation

X(t) = Ax(t), x(ty) =X,
Strategy: assume a sol'n and see If it works.
Assume a solution in the form of a power series:

X(t)=a, +a,(t—t,)+a, (t—t,) +--+a, (t—t,) +--
X(t)=a, +2a, (t—t,)+-+ka, (t=t,) +---
Ax(t) = Aa, + Aa, (t—t, )+ Aa, (t—t,) +---+ Aa, (t—t,) +---

Compare coefficients of like powers of (t—t,)
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The Homogeneous Equations, 2

a, = Aq, a, = Aq,

a, = % Aa, a, = 1 Aa,
=

a, = L Aa, a, =%A‘<aO
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The Homogeneous Equation, 3

Sett =t,, x(t, ) = X, to obtain
a, =X, =
l 2 2 1 k k
x(t)=| 1+ A(t—to)+§A (t—t,) +'"+WA (t—t) +- %
Recall the series expansion for the (scalar) exponential
o) =14 a(t—to)+%a2 (t-t,) +---+%ak (t—t,) +--
Define the matrix exponential

hl™o) & +A(t—to)+%A2(t—to)2+---+%Ak (t=t,) +---

so that |
x(t)=ex, =D (t,t,) X, |

State transition matrix




I
Matrix Exponential

1 1

M=+ AL+ AT+ = A+
2 k!
Some properties:
ieAt _ AeAt _ eAtA
dt
eMe ™ = | :[eAt} Lo




e
Variation of Parameters Formula

Recall, any sol'n of (forced) satisfies

X(t)=x, (t)+x,(t)
where
X, (t)=e™c for constant vector c, satisfies (homog.)

X, (t) is any (particular) sol'n of (forced)
We seek x (t).

Assume the form x_ (t) = e™c(t).




I
Variation of Parameters, 2

X = Ax, +BU and %e‘“c(t) ~ Ae”c(t)+ e e(t)

= ¢(t)=e"B(t)u(t)
= c(t)= ctg] + [ e *B(r)u(r)dr
Now,

X(t)=e"c+e [ e B(r)u(r)dr

=e*c+[ eIB(7)u(r)dr

)




I
Variation of Parameters, 3

Finally, x(t,) =X, = %, =e"*c = c=e"""x,

x(t) =M%, + [ "B (r)u(r)dr

=O(t,t,)X, + t(D(t,T)B(T)U(T)dT

t

Recall (with t,=0)
X (s)=[sl —A] %, +[sl —A] BU(s)
By comparison,

eler]=[sl-A]"




e
Example - MATLAB

>> A=[1 0 0;0 2 1;2 0 O];
>> syms t
>> expm(t*A)

L exp(t), 0, 0]
[ exp(2*t)-2*exp(t)+1, exp(2*t), -1/2+1/2*exp(2*t)]
[ 2*exp(t)-2, 0, 1]
>> laplace(expm(t*A))

L 1/(s-1), 0, 0]
[ 1/(s-2)-2/(s-1)+1/s, 1/(s-2), -1/2/s+1/2/(s-2)]

[ 2/(s-1)-2/s, 0, 1/s]




Summary

e State transition matrix

 Matrix exponential

* Resolvent

e Variation of parameters formula
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